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Abstract. The dynamics of cellular automata that are homogeneous and symmetric with
respect to up-down symmetry is expressed by the probability of the appearance of different
neighbourhooeds on a lattice. The distribution function found in computer simulations is
used to specify the differences in the set of cellular automata. The intrinsic structure of a
rule has been proposed to explain the results obtained. The problem of whether or not
automata are stable, the length of time needed to reach the stabilization and the type of
stabilization, are also discussed.

1. Motivation

Generally, a cellular automata system consists of a lattice—the set of simple {with few
levels) subsystems called spins [o] = {;}, and rules—the set of recipes, R = {r}, which
give the method for finding the value of any spin in the next time step. As a result,
cellular automata are the simplest models of discretized dynamics governed by a
nonlinear equation. Evolution of such systems can be observed in step-by-step computer
simulations. In the last few years cellular automata have been extensively studied [1,
2 and references quoted therein]. The model considered is popular and widely known
and there exist several distinct approaches aimed at different applications.

In this paper a square lattice is considered with dimension L where every spin can
beinone of two states: up=1,down=0:{o;=0,1;i=1,..., L*} =[¢],x.. The adopted
rules do not depend on a spin site i, and the state of any o; at time t+1 is determined
by its nearest neighbourhood ©;(¢) = (E; (¢}, N, (1), Wi{1), 8:(1)),

W,--- o, -+ E (1.1)

in the following sense:
o (t+1)=r(®,(1)). (1.2)

Notice the correspondence between the notation in (1.1) and the geographic map’s
directions.
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Since there is a great number of both the possible initial states of a lattice and the
number of rules, the examination of cellular automata is aimed at dividing the whole
problem into smaller subclasses. Wolfram gave the classification of cellular automata
[1]. He based his work on the differences in asymptotic behaviour of celiular automata
systems, This classification has been specified more precisely by Stauffer and co-workers
[2-4]. They found that after a very long time the patterns of homogeneous cellular
automata fall into one of six classes of possible final configurations. There are five
¢lasses in the above clagsification where the shapes of patterns stabilize in a fixed way,
The rules leading to stabilization can be called dissipative. The evolution of stable
cellular automata occurs in one of the following ways:

(i) The whole pattern is shifted in one direction; a rule works as a translation by
one lattice site. This can be called fixed point stabilization.

(ii) The whole pattern is shifted in one direction together with flipping all spins;
a rule works as the compaosition of a translation and a spin value conjugation. This is
the oscillating fixed point class.

(iii) The spin configurations are repeated periodically and during one time period
the pattern is shifted by a spatial period in one direction; a rule works as a periodic
transformation which after some (often L/2, or L) steps combine to the translation—
limit cycles.

Dissipative rules can be classified not only according to the pattern shapes but also
with respect to the size of a basin attraction {3]. Hence, the idea of this classification
is based on the number of initial states which are attracted to the final state.

Let us consider a subclass of rules, r,e Rg, which are symmetric with respect to
up-down symmetry:

r(=0,(1)) =1-r(0,(1)) (1.3)
where —@.(=(1—F(N 1-N.A(). 1—W( (). 1—-S8.(1)), Notice that
Y AL Al A e ATy s STIATS (AN R AN T A Dl
there exists an anti-rule, r®, defined by the following equation:

r(@K1) = 1-r,(©.(1). (1.4)
Thus, any cellular automaton [o*] governed by rf* evolves in the following way:
oM(1)=1-a(1) oM2)=r0,(1)=1-(1-r(8,(1))) = 0:(2).

Therefore after two steps the patterns of both [¢] and [e*] coincide. Hence, if a rule
stabilizes the system as a fixed point then the corresponding anti-rule will lead the
system to the oscillating fixed point, and reversely (see [6] for details).

In the whole set of 2'®=65 536 of possible homogeneous rules on a square lattice,
there are 5.7 and 2.8% rules stabilizing as fixed points or oscillations of period 2 (classes
0-4 in the classification of [3, 4]}, respectively [2]. The class of symmetric rules consists
of 2 =256, which stands for only 0.39% of all rules. But among them 136 always reach
the stabilization and for a further 48 there is a suspicion that their stabilization does
not always appear because of the short observation time.

There exist four patterns that play a significant role among all final states obtained
in the evolution of symmetric cellular automata. These are as follows:

0000 1111

0000 1111
. 1.5
cluster-board 0000 or 11 (1.5)

(000 1111
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0101
1010
hess- 1.6
chess-board o101 (1.6)
1010
0000 1010
1111 1010
line-board 1.7
ine-boar 0000 or 1010 (1.7)
1111 1010
0011 0011
0110 1001
ir- 1.8
pair-board 1100 or 1100 (1.8)
1001 0110.

Their meaning follows from the fact that all of them are stable points of the evolution
equation (1.2). It means that all patterns are unchangeable by any symmetric rule.
Hence, if r,€ Rg then [o,] = r[o,] where [oy] is one of (1.5), (1.6}, (1.7) or {1.8), and
the equivalence is up to a translation or a translation+ conjugation. Of course, there
are only a few rules producing such shapes from any random initial state. All others
exhibit the property of conserving the above given special shapes only. Notice that a
few neighbourhoods result in building the patterns, and because of this they can be
uniquely characterized by the function which peints cut some particular neighbour-
hoods.

The aim of the present paper is to describe all homogeneous symmetric cellular
automata by the distributions of neighbourhoods in the final patterns. Since there
exists a unique correspondence between rules and such distributions, we obtain a
powerful tool for the further examination of cellular automata.

The paper is organized as follows: section 2 contains the description of computer
experiments and results. In section 3 a qualitative explanation of the obtained results
is given while section 4 contains final conclusions.

2. Simulation results

Figure 1 presents 16 different configurations #; corresponding to different states of the
four nearest neighbours around an ith spin o; on the square lattice (1.1). One can
assign a number n ranging from 15 to 0 to configurations as indicated in figure 1.
Notice that in pairs (n, 15— n) the configurations &(n) and #(15—n) are symmetric
with respect to up-down symmetry. A rule is defined as the set of up or down spin
states which are taken by a central spin in the next time step according to the
configuration of its neighbours. So each rule can be uniquely characterized by the
following number [3]:

15

r=% a(®%(n)2" (2.1)

n=

By the property (1.3), the symmetric rules r,€ Rg; act symmetrically on symmetric
configurations. Therefore the 16 elements of the set {o;(#({n))} are not independent.
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0 0 1 0 0
0 0 0 1 0 0 1 0 0 0
0 g 0 0 1
15(7) 14(86) 13(5) 12(4) 11(3)
1 0 0 1 ¥ 0
0 1 1 1 0 1 1 0 0 0 1 0
0 0 1 0 1 1
1002} 9(1) 8(0) 7 6 5
1 1 0 1 1
1 1 0 1 1 1 1 0 1 1
0 1 1 1 1
4 3 2 1 [

Figure 1. Configurations and their numbers. Numbers in parentheses are for symmetric
rules numbers only.

They satisfy the following relation:
a{#(n})=1-0:;(H(15—n}). (2.2)
Consequently, instead of 16 variables we deal with 8 independent ones. Therefore, the

number of all rules 2'¢ is reduced to 2* =256. Taking numbers n=7, ..., 0 (numbers
in brackets in figure 1) the rule description (2.1} can also be reduced to

- L a(s(m" 23)

and its uniqueness is still preserved. Notice that the anti-rule’s number, r{* (1.4), has
the following property r2*=255—r,.

The properties {1.3) and (1.4) allow us to decrease the total number of symmetric
rules by half. For the purpose of further consideration attention is focused only on
the rules which have the property o;(-3(7}) =0. Furthermore, 128 such rules can be

ararirad 17 ~la Al anvivalanass with racmont ta ratatinnal cummatry (ratatin
BlUuP\-U llllu o e Ulaca\‘a Ul. WY LLY @IV "ll.ll LvOpwil LU LuUrdaniviial ﬂ"llllll\.rll-’ L Ulullull

by =7 /2, 7). Finally, among these 32 classes there are § which are equivalent with
respect to mirror symmetry to some other classes. It reduces the number of classes to
24. Hence, 24 rules fully represent 256 symmetric rules. All 24 representatives considered
are listed in the first column in table 1. The number of rules within a particular ciass
is given in the last column of table 1.

Some properties of the symmetric rules have been presented in [6, 7]. One can find
there, for example, a full characterization of the final state of the lattice of homogeneous
and symmetric automata in the langoage of three macroscopic functions:

(i) magnetization—the number of spins being in up state;

(i1} activity—the number of flipping spins in the last time step;

(iii) time——the number of computer steps needed to reach the stabilization.

These results give us some hints how the set of symmetric rules can be considered;
however, they do not allow an easy explanation of the properties of the system.

For our further consideration one of the above-mentioned functions, namely time,
is of importance. Recall that the whole set Rg has been divided there into three parts:

(i} rules which always stabilize the system {dissipative rules): first 12 rules intable 1;
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Table 1. The probabilities of finding the #{;) configuration in a final pattern, { p(#{i)): i =
15,..., 8} with their STD errors. All numbers are in per cent. In the last column is given
the number of rules which are equivalent to the one considered. L=44, P=0.5.

Configuration
Rule Number

number p(3(15)) p{(#(14)} p(#(13}) p(#(12)) p(HF1)) p((10)) p{H9)) p(H(8)) oftules

1 47.9£25 0234026 0.18+045 022:026 0.18+045 063060 000+002 068+069 B8
6 47.0£21 1.37+093 0.01£0.04 137+093 0.01£003 0.08+0.27 000£000 009+0.29 8
9 63060 62:£037 62+044 634038 63+038 64:057  63+055 62+054 8
10 128+16 59040 60+041 59+034 6.0+033 128+083 000+000 0.00+0.00 16
11 89096 48+041 88+03% 48+030 89042 722051 000000 68x056 B
13 7.0+£0.58 89042 47+0.34 9.0+048 4.7+036 0004600 69039 §Ex0.53 16
25 0.78+1.1  (.28+0.59 0254022 028+059 025+022 47516 0566x060 0.00+0.01 16
27 1410 003+0.08 0804069 0.03+£008 080069 47.5+1.6 0345065 0.00+0.00 16

41 0.00£0.0F 0224021 005£023 023x022 005023 071056 47.8+16 05811062 8
45 0.00£000 12+14 000000 1.2x14 001002 028+1.0 47.7+21 0054023 §
114 012056 62+0.65 61042 62x068 61030 011055 125+£11  126+1.1 |
118 0.00:000 47037 8.9+050 47047 B83x054 7.0+060 38054 70036

12 11.9£29 11921 053+021 11.9+21 053021 052+0.16 123x24 052016
14 30.5£12 63+1.3 15+14 6213 3514 0.12:0.14 002:x004 0.0x0.12
115 002£0.04 5919 33073 59+19 33071 012002 309=27  0.13£013
116 056017 051084 122208 ¢54x018 122x¢7 10715 053016 11.8+1.3

117 0.12+0.15  3.3+038 6.0+0.8 3.4+09 6108 30719 015+£0.13 0042008 16

42 9719 772067  47x050 T6+0.62 47034 53x052 49+052 54=x053 8
43 59063 60+£047  59£0359 60+033  460+047 63055 65037 62=x058 &
49 55+£0.8¢ 77+051 47038 T6+£044  4Tx039 93101 54045 554037 16
51 6.2+0.9 63+0.5 6.0£0.3 6.2x0.5 6104 6.5+0.5 6.0=x0.5 6106 16
113 64+0.81 63045 632052 63x055 63047  6.1+067 63+044 6320357 8
121 50+067 474037 7.3x050 4.6+044 T4£038 53077 98+14 524036 8
124 62+060 624048 624033 63+£042 61037 62x056 63+038 63+045 8

(it) rules for which stabilization sometimes occurs: 5 rules in the middle of table 1;

(iii} rules for which stabilization has never been observed: last 7 rules in table 1.
Moreover, rules 1 and 6 always give patterns of clustering type (1.5), (1.6), rules 25
and 28 always produce patterns of pair type (1.7), and rules 41 and 44 of line type
(1.8) (see [6] for additional details).

The purpose of the present computer experiments is to find distributions of prob-
abilities of all configurations appearing in the final patterns of symmetric and
homogeneous cellular automata. The results are collected in tables 1 and 2. The results
obtained exhibit a considerable regularity; therefore, apart from the results obtained,
their STD errors are also included in both tables. Computer experiments are performed
for periodic lattices with the size L =44 and with two types of random initial states.
Firstly, the probability P of a single spin to point up is taken as P =0.5 and therefore
alt initial configurations are of equal probability (table 1). Secondiy, since some rules
provide results depending on the initial probability P, (see [6] for magnetization and
activity dependence on P), experiments with P=0.1 were also performed (table 2).
The results obtained for the latter case of the initial conditions are presented only
when they differ more than is allowed by STD errors. One can learn about initial
distributions of neighbourhoods by looking at rule 9 in both tables. The special role
of this rule will be explained in the last section.

We have to explain the case when the considered rules stabilize the system in a
periodic way. In this case the numbers of configurations vary periodically in time.
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Table 2. The distribution functions in the case L=44 and P=0.1 {%).

Configuration
Rule pLB(15))  p(8Q14)}  p(8(13)) p(d(12)) p(S(11))  p(H10D  p(HH)  p(H(8))
number  p(#(0))  p(8(1))  p(HH2)}  p(8(3))  p(#3))  p(HSE)  p(H6))  p(H(7))

1 100£0.00 000000 000000 000000 000000 0.00+0,00 0.00£0.00 0.00x000
0.00£000 000000 0.00£000 000000 000000 0002000 0600000 0.00+0.00

6 100.0+£00.00 000000 0.00£0.00 000£000 000000 000000 000000 0.00x0.00
0.00£000 000£000 0.00£0.00 000+£000 000000 0.00+£000 000000 000x0.00

9 65,6055 12£0.20 7.3x031 1.2+0.24 73033 033x022 0842019 0774022
0.02+003 009007 0.09+0.06 009007 0.10=007 08%%0.23 0.82z0.17 0,78+0.21

10 67308 67034 6.6+0.29 1.2+0.29 720,23 21041 0002000 0.00+0.00
014010 072£019 071019  0.16£0.1¢ 014011 010+0.24 000000 000+0,00

11 67.1+07 67 £0.29 6.9+0.23 67030 T.4+0.21 13020 000000 082+0.14
0.03£004 006£0.04 0.70£0.20 0.07x0.06 023x0.13 079+0.12 0.00x0.00 1.3£0.22

13 65308 80+0.34 7.6+032 19+£0.33 T1x031 000000 076022 0931019
000001 009£007 0.07£0.06 0.15£0.09 001003 0.00+0.00 1.6£0.23 1.0x0.19

41 1.3+1.0 1.1+2.5 0.00+ 0.00 T1£25 0.00=0.00 093+037 368:47 097037
0.00£000  0.10%0.407 000000 0071006 0.00+£0.00 0952034 33.8+27 0.95£0.34

45 1.3+1.1 9529 0.00+0.00 96+£29 000000 000000 347x4.5 6.00£0.00
0.00+£000 046£0.75 000000 046+0.74 000£0.00 0.00x0.00 43.9+19 0.00+0.00

114 0.00 % 0.00 59x0.34 8.1:+0.48 6.2+0.39 1.9+043 Q.00+0.00 82+062 201072
0.00+ 0,00 33=040 4.7£0.51 31042 49057 0.00x£0.00 791064 1971085

118 0.00 = 0.00 1.5£0.25 9.5£0.71 1.6£0.28 93075 123x0.74 36064 128x0.76
0.00£0.00 1.5=0.28 9.0£0.77 1.4+£0.23 922066 12.4£075 35061 125071

12 640+ 1.6 8.9=0.31 6.8+0.41 8.9+10.31 68041 000000 091034 0.00=0.00
003005 028=064 005006 028+066 005+0.06 0.00:£0.02 282039  0.00+0.02

14 67.1:1.8 1.3=0.28 7.1+0.29 7.3£0.28 71029 400000  0.00+0.00 0.00=000
0.39£0.30 10044 0792034 1.0+044 079034 0.00£000 0.00£0.00 0.00x0.00

Since the differences between particular time steps are so small and they fall within
the STD error interval, they can be neglected.

The average results obtained for P=0.5 follow from at least 50 computer experi-
ments and they are symmetric with respect to up-down symmetry, as expected.

For comparison we also simulate lattices with helical boundary conditions [2] and
with different linear sizes L =43 and 98. The observed differences between helical and
periodic cases do not exceed STD errors. Because of the vertical twist in the helical
case, we restrict our search for the dynamics stabilization to the stabilization of the
main part of a pattern: that is, without its first and last columns. In some experiments
different limit evolutions were observed, depending on different boundary conditions.
For example, the limit point stabilization was obtained in one case, and the periodic
stabilization with the period equal to the lattice size L in some other cases. It does
not affect the distribution of neighbourhoods.

The evolution is stopped when the system stabilizes or when the number of time
steps is bigger than 200 in the cases L =43, and 44 or 600 for L =98.

The case L=43 is important because of the fact that some rules never lead to
stabilization or stabilize the considered system in another way when the lattice size is
an odd number. It refers to five rules for the middle part of table 1 [6]. The results
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obtained exhibit greater error intervals but the averages for particular neighbourhoods
do not differ from the case when L is even.

Results for L =98 also do not differ from L =43 and 44 but they are more steady.
The corresponding STD errors are smaller by half. It was also observed that if any
configuration occurred on the L =44 lattice with probability smaller than 1%, then in
the case L =98 it would be observed with the probability reduced by at least half.

One can see that there is a unique correspondence between the distribution of
configurations in final patterns and dissipative rules. Any stabilizing rule can be
characterized by 16 fixed numbers { p(8(i)}, i=15,..., 0} corresponding to the proba-
bility of finding any neighbourhood in the final patterns. Since for some rules the
initial probability P influences the final states, the above numbers have to be indexed
by P. To be precise, one can introduce a family I of distributions of configurations
in final patterns, DE ={p3(#(i})): i=15,...,0}, defined on the set of dissipative and
symmetric rules ry€ Ry and on the interval of initial probabilities (0, 1):

D: Ryx(0,1}> D% . (2.4)

Then, magnetization can be easily expressed by the D function in the fellowing way:

[ v
R
-1
e
—_
I~
—_—
R
S
o~
st

where g; are the numbers of up states in a @(i} configuration.

Because of the shape of distribution functions, one can make the general division
of the domain R, into two subsets: rules with sharp peaks: 1, 6, 25, 27, 41, 45 and
rules with strong zeros: 10, 11, 13, 114, 118, 12, 14, 115, 116, 117. Rule 9 plays a special
role. It conserves any initial pattern.

Since STD errors are small, the domain of D can be extended to the whole set of
symmetric rules. The general difference between the stabilizing and non-stabilizing
cases consists in the fact that there are neither peaks nor zeros in the distribution of
non-stable automata.

Non-stabilizing rules are independent of P (see table 2, and [6]). Notice that if
the rule is independent of P, then I} becomes the global characterization of the rule
at{ractor.

3. Analysis of stabilities

Instead of considering a rule r as a function of four variabies corresponding to the
particular neighbours, one can view r as a function over the set of configurations.
Then, r is a function of one variable and its domain consists of 16 elements, labelled
by numbers in figure 1. Because of the spin values taken by neighbours, the elements
of the domain can be grouped as follows:
A: all neighbours have the same value: 2 configurations, 15, 0;

D: ihtee 'ﬁélguuuun have the same value: 8 ccnugura.mns, 14,...,1L,4, ... o1

C: there are two pairs with different values: 6 configurations, 10, ..., 5.

From the point of view of a symmetric rule r,, it is enough to consider half of each

group. Thus, we choose as follows:

A={15} B={14,.. .,11} C={10,9,8}. 3.1
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Hence, any r, can be defined as a mapping from the union of the separate subdomains
A, B and C to the set of ‘actions’ which is also divided into three parts, respectively,
to the actions on the subdomains:

FF
AF
s
F AS s
r: AUBLC- (FA)’ . jas]y. (3.2)
S-E
S-N/.

\ Vs /

The notation introduced above can be easily explained by the following observations.
There exist two possible actions o;(r+1) of a spin o; in time ¢+ 1 in the case when
its neighbourhood ®,() in time ¢ forms an A configuration: the first consists in
following neighbours in a Ferro ways,

a;(t+1)=0 if0;(t)e A (3.3)
and the second one in an anti-Ferro way,
o (t+1) =1 if@,(1)e A (3.4)

Let us denote them F and FA, respectively. Notice that r, with property (3.4) is cailed
an anti-Rule in the previous section.

The set of actions over the B subdomain, B actions, is the greatest one because
the number of B elements is the biggest. All 16 =2* B actions can be defined as:

(i) clustering: 2 actions
FF: a(t+1)=0 if®(r)eB
AF: g{t+1)=1 if®;(nNe8sd

(ii) shifts: 8 actions

S: a{t+1)=8,(r) if@;(t)e B.

E N, W: as above and the letter denotes the neighbour which
is shifted.

AS: o{t+1)=1-S8,(1) if@;(t)e B.

AE, AN, AW; as above and letters denote both the spin value

conjugation and the neighbour which is shifted.
(iii) alternative shifts: 6 actions
S-E: ai(t+1)=max(S(1), E{1)) if®(r)e B.

S—NS-WE-WE-NN-W: as above with active neigh-
bours denoted by the letters.
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The last part of r, is responsible for the rule action when the neighbourhood of a spin
is € type, C action. One can see that it has to be one from the shifts listed as follows:

s: o, (++1)=8,(1) ifef{eC .

e n w: as above and the letter denotes the neighbour which
is shifted.

as: o (t+1)=1-51) if® (el

ae, an, aw: as above and letters denotes both the spin value conju-

gation and the neighbour which is shifted.

The relations between the numbers of the rules (2.3} and actions (3.2} are presented
in table 1 are given as

1=(F, FF, ) 6 = (F, FF, as) 9=(F,S, 5)
i0=(F, 8, w) i1=(F S, an) 13={(F, 5, aw)

25=(F, W-385,s) 27=(F, W-S5, an) 41=(F,5- N, s)
45=(F,S— N, aw) 114 =(F, AS, w) 118 = (F, AS, as)
12=(F. 8, n) 14=(F, S, as) 115 = (F, AS, an) (3.5)
116 =(F, AS, n) 117 = (F, AS, aw) 42=(F, §~N, w)
43=(F,5—N, an) 49=(F, W—N,s) 51=(F, W— N, an)
113=(F, AS, 5) 121=(F, AF, 5) 124 = (F, AF, as).

The actions of any rule on the separated parts of domain are clearly seen from equations
(3.5). When one considers a lattice where spins with A, B or C neighbourhoods are
separated from each other, then one can observe evolution as a product:

wfl A B AN ol AN s o DY N W Y {1 L)
FAUDULJ=TAJANDIRATL). 12.0)

On a lattice the only way to see separated actions is to create a lattice with all
neighbourhoods belonging to one subdomain. One can check that patterns (1.5)-(1.8)
fulfil this condition. On random initial states the elements from different subdomains
are randomly mixed. If P=0.5 then half of the configurations belong to the B
subdomain, and therefore any action on the B clements is essential for the whole
evolution of automata. This action dominates over other partial movements in the
following sense: automata reach the stabilization almost always on a pattern where a
rule can work as a translation in the direction which agrees with the B action, There are
two exceptions from the above observation: when there exists a strong contradiction
between B and C actions (rules (F, §, n) and ( F, AS, n)) and when the B action does
not determine any direction (rules (F, FF) type). In the first case the evolution has
the property that all changes made during one period combines with the translation
by the number of period length in the direction fixed by the B action. In the second
case, the fixed point stabilization is rarely not a translation in one direction, but there
are a few parts in a final pattern shifted in different directions [7].

The role of the B neighbourhood is easy to see when the B action is a shift (see
table 3). Rules 9= (F, 8, s) and its anti-rule 246 = (FA, AS, as) play a special role. Rule
9 is a translation from South, hence rule 246 is a composition of a translation from
South and a spin conjugation, and any initial pattern is its own attractor. The evolution
with a rule r, which has the same B action but acts differently on the C subdomain,
can be described as the elimination of neighbourhoods on which the rule r, differs
from one of the pair 9 and 246. The smaller number of differences determines towards
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Table 3. Differences between the rules and the property of a rule of leading to the stalization,
For comparison with theoretical predictions, resulis are given referring to the length of
time needed by the automata to reach the stabilization and the type of the stabilization
observed. L=44, P=0.5, and time of observation does not exceed 400 steps.

Rule number 0Odd config. to 0Odd config. to (T to Probability
and action SHIFT SHIFT+CONJ. stabilize and limit
9=(F, 8§, s) None 15,...,8 (Ty=0 1 point
11=(F, §, an) 9 15,...,10,8 (TY=6 1 point
13=(F, §, aw) 10 15,...,11,9,8 (Ty=6 1 point
10=(F, S, w) 9,8 15,...,10 (Ty=11 1 point
12=(F, S, n) 10,9 15,...,11,8 (Ty=50 1 point/period
14=(F, S, as) 10,9,8 15,..., 11 {T)=206 0.5 point
113=(F, AS, 5) 14,13,12, 11 15,10,9,8 Never 0
115=(F, AS, an} 14,...,11,9 15,10, 8 (T)=250 0.26 oscillation
117=(F, AS, aw) 14,...,11,10 15,9,8 {T)y=206 0.53 oscillation
116=(F, AS, n) 14,...,11,10,8 15,9 {T)y=50 1 oscillation/ period
114=(F, AS, e) 14,...,11,9,8 15,10 (T)y=12 1 oscillation
118 =(F, AS, as) 14,...,8 15 (Ty=7 1 oscillation
246 =(FA, AS, as) 15,...,8 None (T)=0 1 oscillation

which evolution the rule r, leads. When the same numbers of differences appear, case
113=(F, AS, s), the stabilization cannot be reached. The conflict in the directions of
shifts over the B and C subdomains is also reflected in the increase of the length of
time needed to reach the stabilization.

There is also a reaction from the C action on the B subdomain. According to this
process one obtains the same probability of finding B configurations having the same
vertical (14, 12) and horizontal (13, 11) neighbours, The strongest interaction is obser-
ved when the shifts have opposite directions, as in rules 12=(F, S,n) and 116=
(F, AS, n). The favoured pair is the one in which B actions N and § or N and AS
agree. The differences in probabilities between pairs also depend on P (compare tables
1 and 2). Other C shifts w, ¢, 5, do not change the initial distribution of the B
neighbourhoods. They are neutral. The influence of the an C action can be explained
in the same way as for n, by comparing B actions S with AN, and AS with AN. The
rest of the C actions as, ae, aw, favour the other pair more than an action does.

If the action over B is not of the shift type, the evolution does not only mean
elimination of some A or C neighbourhoods, but it also works on converting B
neighbourhoods into one from the list (1.5)-(1.8). Such a double effect needs more
time than the destroying process. But the stabilization at one of the patterns from
(1.5)-(1.8) is only observed if the C action does not oppose the B action. It means
that rules 25=(F, W-S8,s5), 27=(F, W-S§,an), 41=(F,5—N,s) and 45=
(F, §— N, aw) always lead to stabilization (in a time shorter than 100 steps if L=44)
as a translation with one from directions given by the B action. On the other hand,
rulesd42=(F,S—N,w),43=(F,S— N, an),49=(F, W—N, s)and 51 =(F, W— N, an)
never cause stabilization in our experiments, Notice that stabilization is reached on
the pattern where there are only such € neighbourhoods which have the property
W, = §, in case of rules 25 and 26 and S;= N; in cases 41 and 45.
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The action FF over the B subdomain destroys B neighbourhoods, independently
of the C shift, but also converts them into A neighbourhoods. In this case the B action
does not fix the translation direction and therefore the direction depends on the €
action but it is not fixed [6, 7]. It rarely happens that a final pattern consists of a few
rectangular parts, on which the evolution is a translation but the directions of shifis
in different parts are different. The rule with the B action, AF as opposed to FF,
cannot give a stable solution.

4. Conclusions

There exists a powerful characterization of dissipative symmetric and homogeneous
automata by the distribution of neighbourhoods in the final patterns. The attracting
patterns attainable by the automata are firmly determined in this picture if the initial
states of automata are taken randomly. The distribution function D, given in equation
(2.4), as the macroscopic function can give answers to some global questions (for
example, it can be used to compute magnetization (2.5)). Moreover, it also gives some
new hints concerning the old problem of classification of cellular automata. The final
patterns can be viewed not only as a mixture of zeros and ones but as well defined
structures which are conserved in time,

The properties of non-stabilizing rules can be expressed by the neighbourhood
distribution function as well. Although the automata are not stable, the possible pattern
configurations passed during the evolution are greatly restricted.

Since the distribution function D also reflects the individual properties of rules, it
can be vsed as a tool for understanding the nature of cellular automata.

Notice that there is no problem introducing the neighbourhood counters into the
computer program because the neighbourhoods have to be recognized during the
evolution of homogeneous cellular automata.

The structure of the rules introduced via the discussed actions makes it possible
to give a satisfactory explanation not only of the obtained neighbourhood distributions
in the final patterns but also allows elucidation of such properties of the automata as:
whether or not the stabilization is reached, the length of time needed to stabilize the
system, and even type of stabilization.
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