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Abstract. The dynamics of cellular automata that are homogeneous and symmetric with 
respect to up-down symmetry is expressed by the probability of the appearance of different 
neighbourhoods on a lattice. The distribution function found in computer simulations is 
used to specify the differences in the set of cellular automata. The intrinsic structure of a 
rule has been proposed to explain the results obtained. The problem of whether or not 
automata are stable, the length of time needed to reach the stabilization and the type of 
stabilization, are also discussed. 

1. Motivation 

Generally, a cellular automata system consists of a lattice-the set of simple (with few 
levels) subsystems called spins [ U ]  = { u ~ } ,  and rules-the set of recipes, R = { r } ,  which 
give the method for finding the value of any spin in the next time step. As a result, 
cellular automata are the simplest models of discretized dynamics governed by a 
nonlinear equation. Evolution of such systems can be observed in step-by-step computer 
simulations. In the last few years cellular automata have been extensively studied [ l ,  
2 and references quoted therein]. The model considered is popular and widely known 
and there exist several distinct approaches aimed at different applications. 

In this paper a square lattice is considered with dimension L where every spin can 
beinoneoftwostates: up=l,down=O: {u,=O, 1; i = 1 ,  ..., L2}=[uILxL.Theadopted 
rules do not depend on a spin site i, and the state of any uZ at time f + 1 is determined 
by its nearest neighbourhood O , ( f )  = ( E , ( f ) ,  N , ( t ) ,  W, ( t ) ,  $ ( I ) ) ,  

* . . .  

* . . .  s, . . .  * 
in the following sense: 

u?(f+l) = r ( O j ( t ) ) .  (1.2) 

Notice the correspondence between the notation in (1.1) and the geographic map’s 
directions. 

0305-4470/92/061441+ 11604.50 @ 1992 IOP Publishing Ltd 1441 
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Since there is a great number of both the possible initial states of a lattice and the 
number of rules, the examination of cellular automata is aimed at dividing the whole 
problem into smaller subclasses. Wolfram gave the classification of cellular automata 
[ 11. He based his work on the differences in asymptotic behaviour of cellular automata 
systems. This classification has been specified more precisely by Stauffer and co-workers 
[Z-41. They found that after a very long time the patterns of homogeneous cellular 
automata fall into one of six classes of possible final configurations. There are five 
c!fisses in !he c!zssif;.ca?ion ?.ihere !he shzpes ~Cpzttprcs stzbi!ize ir! a fixed wav 

The rules leading to stabilization can be called dissipatioe. The evolution of stable 
cellular automata occurs in one of the following ways: 

(i) The whole pattern is shifted in one direction; a rule works as a translation by 
one lattice site. This can be called j k e d  point stabilization. 

(ii) The whole pattern is shifted in one direction together with flipping all spins; 
a rule works as the composition of a translation and a spin value conjugation. This is 
the oscillating Jixed point class. 

(iii) The spin configurations are repeated periodically and during one time period 
the pattem is shifted by a spatial period in one direction; a rule works as a periodic 
transformation which after some (often L/2, or L) steps combine to the translation- 
limit cycles. 

Dissipative rules can be classified not only according to the pattern shapes hut also 
with respect to the size of a basin attraction ijj. Hence, the idea of this ciassification 
is based on the number of initial states which are attracted to the final state. 

Let us consider a subclass of rules, r,E R,, which are symmetric with respect to 
up-down symmetry: 

(1.3) rS(-ei(t)) = 1 - rS(ej(t)) 

where -e;(!) = (! - E;(! ) ,  1 -.vi(!), 1 - !vi(!), ! - S;!!)). No!icP thzt for any %!e r5 ,  

rf(oj(t))= 1-rS(@?(t)). (1.4) 

there exists an anti-rule, rf, defined by the following equation: 

Thus, any cellular automaton [uA] governed by rf evolves in the following way: 

U?( 1) = 1 -Uj(  1 )  u 4 ( 2 ) = r f ( O , ( l ) ) = l  - ( I  -r*(Q;(l))) =u;(2).  

Therefore after two steps the patterns of both [U] and [U*] coincide. Hence, if a rule 
stabilizes the system as a fixed point then the corresponding anti-rule will lead the 
system to the oscillating fixed point, and reversely (see [6] for details). 

In the whole set of 216 = 65 536 of possible homogeneous rules on a square lattice, 
there are 5.7 and 2.8% rules stabilizing as fixed points or oscillations of period 2 (classes 
0-4 in the classification of [3,4]), respectively [2]. The class of symmetric rules consists 
oi 28 = 256, which stands ior oniy 0.3% of aii ruies. But among tnem i% aiways reach 
the stabilization and for a further 48 there is a suspicion that their stabilization does 
not always appear because of the short observation time. 

There exist four patterns that play a significant role among all final states obtained 
in the evolution of symmetric cellular automata. These are as follows: 

0000 1 1 1 1  
1 1 1 1  
1 1 1 1  

or 
0000 
0000 

cluster-board 

0000 1 1 1 1  
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chess-board 

line-board 

pair-board 

0101 
I010 
0101 
1010 

0000 
1111 
0000 
1111 

0011 
0110 
1100 
1001 

or 

or 

1010 
1010 
1010 
1010 

0011 
1001 
1100 
01 10. 

Their meaning follows from the fact that all of them are stable points of the evolution 
equation (1.2). It means that all patterns are unchangeable by any symmetric rule. 
Hence, if r s E  R ,  then [uo]=r,[uo] where [u0] is one of (1.5), (1.6), (1.7) or (1.8), and 
the equivalence is up to a translation or a translation+conjugation. Of course, there 
are only a few rules producing such shapes from any random initial state. All others 
exhibit the property of conserving the above given special shapes only. Notice that a 
few neighbourhoods result in building the patterns, and because of this they can be 
uniquely characterized by the function which points out some particular neighbour- 
hoods. 

The aim of the present paper is to describe all homogeneous symmetric cellular 
automata by the distributions of neighbourhoods in the final patterns. Since there 
exists a unique correspondence between rules and such distributions, we obtain a 
powerful tool for the further examination of cellular automata. 

The paper is organized as follows: section 2 contains the description of computer 
experiments and results. In section 3 a qualitative explanation of the obtained results 
is given while section 4 contains final conclusions. 

2. Simulation results 

Figure 1 presents 16 different configurations ai corresponding to different states of the 
four nearest neighbours around an ith spin uj on the square lattice (1.1). One can 
assign a number n ranging from 15 to 0 to configurations as indicated in figure 1. 
Notice that in pairs (n, 15-n) the configurations @ ( n )  and iY(15-n) are symmetric 
with respect to up-down symmetry. A rule is defined as the set of up or down spin 
states which are taken by a central spin in the next time step according to the 
configuration of its neighbours. So each rule can be uniquely characterized by the 
following number [3]: 

I S  

r =  I: o;(+(n))Z". (2.1) 
n=o 

By the property (1.3), the symmetric rules r,E R ,  act symmetrically on symmetric 
configurations. Therefore the 16 elements of the set (uj(b(n))} are not independent. 
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0 0 1 0 0 
0 0 0 1 0 0 1 0 0 0  

0 0 0 0 I 

1 - V )  14(6i 13(5i 1x4 )  1 J(3) 

1 0 0 I 1 0 
0 1 1 1 0 1 1 0 0 0 1 0  

0 0 1 0 I I 

I o w  9 ( J )  8(0) 7 6 5 

1 I 0 1 1 

1 1 0 1 1 1 1 0 1 1  
0 1 1 1 1 

4 3 2 I 0 

Figure 1. Configurations and their numbers. Numbers in parentheses are for symmetric 
rules numben only. 

They satisfy the following relation: 

(2 .2)  ,^ ,  \ \  , -,.- u{(u(n)) = i -u<(u(i>- n ) ) .  

Consequently, instead of 16 variables we deal with 8 independent ones. Therefore, the 
number of all rules 2'' is reduced to 2 ' s  256. Taking numbers n = 7 , .  . . , 0 (numbers 
in brackets in figure 1) the rule description (2.1) can also be reduced to 

7 

r ,=  1 u c ( 9 ( n ) ) 2 "  (2.3) 

and its uniqueness is still preserved. Notice that the anti-rule's number, r f  ( l .4) ,  has 
the following property r t =  255 - ra. 

The properties (1.3) and (1.4) allow us to decrease the total number of symmetric 
rules by half. For the purpose of  further consideration attention is focused only on 
the rules which have the property uj,(4(7))=0.  Furthermore, 128 such rules can be 

by i 7 r / 2 ,  n). Finally, among these 32 classes there are 8 which are equivalent with 
respect to mirror symmetry to some other classes. It reduces the number of classes to 
24. Hence, 24 rules fully represent 256 symmetric rules. All 24 representatives considered 
are listed in the first column in table 1. The number of rules within a particular class 
is given in the last column of table 1. 

Some properties of the symmetric rules have been presented in [6,7]. One can find 
there, for example, a full characterization of the final state of the lattice of homogeneous 
and symmetric automata in the language of three macroscopic functions: 

"lO 

--,.....-A :-t- 29 -lnrrp- ,.C a..4.7-l---a .G+h rOl..D,-~ tr\ rn+or:Anal olimmntrli (m+.t;nn 6'Y"pb" LLll" ,L U,P.,.,*D "1 Lq","als,,bb ".La. LbDYb.A L" LY,Y,.Y..UI lJ..L...C'. J \LUL'.L.V.. 

(i) magnetization-the number of spins being in up state; 
(ii) activity-the number of flipping spins in the last time step; 
(iii) time-the number of computer steps needed to reach the stabilization. 
These results give us some hints how the set of symmetric rules can be considered; 

however, they do  not allow an easy explanation of the properties of the system. 
For our further consideration one of the above-mentioned functions, namely time, 

is of importance. Recall that the whole set R ,  has been divided there into three parts: 
(i) rules which always stabilize the system (dissipative rules): first 12 rules in table 1; 
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Table I. me probabilities offinding the . P ( i )  configuralion in a final pattern, ( p ( i y ( i ) ) :  i = 
15,. . . ,8) with their STD errors. All numbers are in per cent .  In the last column is given 
the number of rules which are equivalent to the one considered. L=44, P=O.5. 

I 
6 
9 

10 
I 1  
I3 
25 
2 1  
41 
45 

114 
118 

12 
14 

115 
116 
117 

42 
43 
49 
SI 

113 
121 
124 

47.9125 
41.0*21 

1 2 . 8 i  1.6 
6.3e0.60 

8.9i0.96 
7.010.58 

0.18i1.1 
1.4i1.0 
0.00+0.0l 
o.oo*o.w 

0.0010.00 

11.9 i2.9 
30 .5 i12  
0.02i0.04 
0.5610.17 
0.1210.15 

9.1i1.9 
5.9 i0 .63  
5.5*0.89 
6.2 1 0.9 
6.41U.81 
5.010.61 
6.210.60 

0 . 1 2 i m  

0.23 10 .26  0.18iO.45 
1.3110.93 O.OliO.04 
6.2 -t 0.31 6.2 + 0.44 
5.9iO.40 6.0*0.41 
4.8+0.41 8.8*0.39 
89*0.42 4.7*0.34 

0.2810.59 0.25+0.22 
0.03*0.08 0.80+0.69 

0.22*0.21 O.OSiO.23 
1.2i1.4 O.MliO.00 
6.2*0.65 6.1h0.42 
4.7*0.31 8 .9 iO.50  

11.9*2.1 0.53+0.21 
6.3-tl.3 3.5*1.4 
5.9+1.9 3.310.73 

0.51 k0.14 12.2i0.8 
3.3i0.8 6.0*0.8 

1.710.61 4 . l i0 .50  
6.010.47 5.9*0.59 
1 . 1 ~ 0 . 5 1  4 . l i0 .38  
6.3*0.5 6.010.3 
6.3i0.45 6.3*0.52 
4.7*0.31 1.3i0.50 
6.2*0.48 6.2*0.33 

0.22*0.26 
1.31 * 0.93 
6.3h0.38 
5.9i0.34 
4 .8 i0 .30  
Y.Oi0.48 

0.28i0.59 
0.03i0.08 
0.23i0.22 

1 . 2 i 1 . 4  
6 .2 i0 .68  
4 . l i 0 . 4 1  

11.9 f 2 . I  
6.2*1.3 
5.9*1.9 

0.54*0.18 
3.4*0.9 

1.6-tO.62 
6.010.33 
1.6 e 0.44 

6.3*0.55 
4.610.44 
6.3+0.42 

6.2+0.5 

0.18+0.45 
0.01 iO.03 

6.3*0.38 
6.0*0.33 
8.9*0.42 
4.7-10.36 

0.25*0.22 
O.XOiO.69 
0.05 * 0.23 
0.01 i 0.02 

6.1*0.30 
8.8*0.54 

0.53-tO.21 
3 .5 i1 .4  
3.3*0.11 

12.21 0.1 
6.1 * 0.8 

4.1*0.34 
6.0+0.41 
4.1*0.39 
6.1*0.4 
6.310.41 
1 .4 i0 .58  
6.1i0.31 

0.6310.60 
0.08*0.21 
6.4+0.51 

12.8*0.83 
7.2*0.51 

o.oo*o.oo 
47.51 1.6 
41.5* 1.6 
0.11*0.56 
0.28*1.0 
0.11 *0.55 
1.0+0.60 

0.52tO.16 
0.12*0.14 
0.I2iO.IZ 
11.l i1.5 
30.7i1.9 

5.3io.52 
6.3iO.55 
9.3+1.1 
6.510.5 
6.1+0.61 
5.3*0.11 
6.2-tO.56 

o.no+o.o2 
O.OOfO.0O 

6.3*0.55 
o.oo*o.oo 
o.oo*o.oo 
6.910.39 

0.66*0.60 

41.8 * 1.6 
41.7*2.1 
12.5* 1.1 

0.34*0.65 

8.8*0.54 

12.3 i 2.4 

30.9*2.7 
0.53*0.16 
0.15i0.13 

4.9 i 0 . 5 2  
6.5i0.31 
5.4*0.45 
6.0*0.5 
6.3*0.44 
9.8*1.4 
6.3-tO.38 

0.02-to.04 

0.68*0.69 
0.09 *0.29 
6.2zk0.54 

o.oo*o.oo 
6.8+0.56 
8.810.53 

0.00*0.01 
o.oo*o.oo 
0.81 *0.62 
0.05*0.23 
12.6*1.1 
l.Oi0.36 

0.5210.16 
0.10*0.12 
0.13*0.13 
11.8 + 1.3 
0.04*0.08 

5.4*0.53 
6.2+0.58 
5.5+0.31 
6.110.6 
6.3-tO.57 
5.210.36 
6.310.45 

8 
8 
8 

16 
8 

16 
16 
16 
8 
8 

16 
8 

8 
8 
8 
8 

16 

8 
8 

16 
16 
8 
8 
8 

(ii) rules for which stabilization sometimes occurs: 5 rules in the middle of table 1; 
(iii) rules for which stabilization has never been observed: last 7 rules in table 1. 

Moreover, rules 1 and 6 always give patterns of clustering type (1.5). (1.6), rules 25 
and 28 always produce patterns of pair type (1.7), and rules 41 and 44 of line type 
(1.8) (see [6] for additional details). 

The purpose of the present computer experiments is to find distributions of prob- 
abilities of all configurations appearing in the final patterns of symmetric and 
homogeneous cellular automata. The results are collected in tables 1 and 2. The results 
obtained exhibit a considerable regularity; therefore, apart from the results obtained, 
their STD errors are also included in both tables. Computer experiments are performed 
for periodic lattices with the size L=44  and with two types of random initial states. 
Firstly, the probability P of a single spin to point up is taken as P = 0.5 and therefore 
all initial configurations are of equal probability (table 1). Secondly, since some rules 
provide results depending on the initial probability P, (see [6] for magnetization and 
activity dependence on P), experiments with P = 0.1 were also performed (table 2). 
The results obtained for the latter case of the initial conditions are presented only 
when they differ more than is allowed by STD errors. One can learn about initial 
distributions of neighbourhoods by looking at rule 9 in both tables. The special role 
of this rule will be explained in the last section. 

We have to explain the case when the considered rules stabilize the system in a 
periodic way, In this case the numbers of configurations vary periodically in time. 
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Table 1. The distribution functions in the ease L=44 and P=O.l (yo). 

Configuration 

1 

6 

9 

IO 

I 1  

13 

41 

45 

114 

118 

12 

14 

1ooio.oo 
0.wfO.w 

Ioo.o+oo.w 
o.oo+o.oo 
65.6f0.55 
0.02*0.03 

67.3+o.n 
0.14+0.l0 

67.1i0.7 
0.03+0.04 

65.3*0.8 
0.00*0.01 

1.3*1.0 
0.WfO.W 

1.3*1.1 
o.w*o.oo 
o.w*o.oo 
o.w*o.oo 
o.wio.oo 
o.w*o.oo 
64.0i1.6 
O.OI*O.OS 

67.1i1.8 
0.39+0.30 

0.0010.00 
0.w10.00 

o.oo*o.oo 
0.w10.00 

7.210.20 
0.W10.07 

6.7*0.34 
0.72*0.I9 

6.7*0.29 
0.06*0.04 

8.0i0.34 
O.(w*O.O7 

7.1f2.5 
O.lOf0.07 

9.6f2.9 
0.46+0.75 

5.9+0.34 
3.3i0.40 

I.S-tO.25 
1.5+0.28 

n.9io.31 
0.28+0.64 

7.3i0.28 
1.0 iO.M 

0.00*0.00 
0.00*0.00 

o.oo*o.oo 
0.0010.00 

7.3 * 0.31 
0.W10.06 

6.6*0.29 
0.7110.19 

6.9*0.23 
0.70*0.20 

7.0*0.32 
0.07 * 0.06 

o.wio.oo 
o.ooio.oo 
o.wio.oo 
0.W*0.00 

8.1-10.48 
4.710.51 

9.5f0.71 
9.0*0.77 

6.8+0.41 
0.05io.06 

7.1+0.29 
0.79i0.34 

0.0010.00 
o.oo*o.oo 
o.oo*o.oo 
o.ooso.oo 

7.2*0.24 
0.09*0.07 

7.2i0.29 
0.16zt0.10 

6.7i0.30 
0.07*0.06 

7.9 i 0.33 
0.15io.09 

7.1*2.5 
0.07*0.06 

9.612.9 
0.46*0.74 

6.2*0.39 
3.1*0.42 

1.6 i 0.28 
1.4 i 0.23 

8.9 * 0.31 

7.3*0.28 

0.28*0.66 

1.0*0.M 

o.w*o.w 
o.oo*o.w 
o.w*o.w 
o.oo*o.w 

7.3*0.33 
0.10*0.07 

7.210.23 
0.14*0.11 

7.410.21 
0.23*0.13 

7.1 *0.31 
0.01 *0.03 

o.ooio.oo 
o.oo*o.oo 
0.0010.00 
o.ooio.oo 

7.9*0.43 
4.9i0.57 

9.3*0.75 
9.2+0.66 

6.8zt0.41 
0.05+0.06 

7.1*0.29 
0.79S0.34 

0.00*0.00 
0.0010.00 

O.OOfO.W 
0.0010.00 

o.n8+0.22 
0.89*0.23 

2.1i0.41 
0.10*0.24 

1.3i0.20 
0.7% 0.12 

o.ooio.oo 
o.w*o.oo 
0.93-10.37 
0.95*0.34 

o.ooio.oo 
o.oo*o.oo 
0.0010.00 
0.0010.00 

12.3f0.74 
12.4*0.75 

o.oo*o.w 
0.00*0.02 

o.oo+o.w 
o.ooio.oo 

0.wio.w 
o.w*o.oo 
0.WIO.W 
0.WIO.W 

0.84i0.19 
0.82+0.17 

0.0010.00 
0.0010.00 

0.0010.00 
0.0010.00 

0.76+0.22 
1.610.23 

36.8*4.7 
33.8*2.7 

34.714.5 
43.9*1.9 

8.210.62 
7.9+0.64 

3.6+0.64 
3.5*0.61 

0.91 10.34 
2.8iO.39 

0.0010.00 
0.0010.00 

o.w*o.oo 
o.w*o.oo 
0.001o.w 
0.001o.w 

0.77f0.22 
0.78*0.21 

o.oo+o.oo 
0.00*0.w 

0.82+0.14 
1.3f0.22 

0.93*0.19 
1.0*0.19 

0.97i0.37 
0.9SiO.34 

o.wio.00 
o.w*o.oo 
20.1f0.72 
19.7+0.85 

12.8*0.76 
12.5+0.71 

0.00*0.00 
0.00*0.02 

o.ooio.oo 
o.oo*o.oo 

Since the differences between particular time steps are so small and they fall within 
the STD error interval, they can be neglected. 

The average results obtained for P = 0.5 follow from at least 50 computer experi- 
ments and they are symmetric with respect to up-down symmetry, as expected. 

For comparison we also simulate lattices with helical boundary conditions [2] and 
with different linear sizes L = 43 and 98. The observed differences between helical and 
periodic cases do  not exceed STD errors. Because of the vertical twist in the helical 
case, we restrict our search for the dynamics stabilization to the stabilization of the 
main part of a pattern: that is, without its first and last columns. In some experiments 
different limit evolutions were observed, depending on different boundary conditions. 
For example, the limit point stabilization was obtained in one case, and the periodic 
stabilization with the period equal to the lattice size L in some other cases. It does 
not affect the distribution of neighbourhoods. 

The evolution is stopped when the system stabilizes or  when the number of time 
steps is bigger than 200 in the cases L = 43, and 44 or 600 for L = 98. 

The case L=43 is important because of the fact that some rules never lead to 
stabilization or stabilize the considered system in another way when the lattice size i s  
an odd number. It refers to five rules for the middle part of table 1 [ 6 ] .  The results 
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obtained exhibit greater error intervals but the averages for particular neighbourhoods 
do  not differ from the case when L is even. 

Results for L = 98 also do not differ from L = 43 and 44 but they are more steady. 
The corresponding STD errors are smaller by half. It was also observed that if any 
configuration occurred on the L = 44 lattice with probability smaller than I%, then in 
the case L = 9 8  it would be observed with the probability reduced by at least half. 

One can see !hat there is a .nin,=. correspondence he!ween !he distribution of 
configurations in final patterns and dissipative rules. Any stabilizing rule can he 
characterized by 16 fixed numbers ( p (  .It( i)), i = 15,. . . ,O)  corresponding to the proba- 
bility of finding any neighbourhood in the final patterns. Since for some rules the 
initial probability P influences the final states, the above numbers have to be indexed 
by P. To be precise, one can introduce a family D of distributions of configurations 
in final patterns, D> = { p p ( S ( i ) ) :  i = 15,.  . . ,O}, defined on the set of dissipative and 
symmetric rules rd E Rd and on the interval of initial probabilities (0 , l ) :  

D :  Rdx(O,  l)+ D2. (2.4) 

Then, magnetization can be easily expressed by the D function in the following way: 

(2.5) 

where a, are the numbers of up states in a @ ( i )  configuration. 
Because of the shape of distribution functions, one can make the general division 

of the domain Rd into two subsets: rules with sharp peaks: 1 ,  6, 25, 27, 41, 45 and 
rules with strongzeros: 10, 11,  13, 114, 118, 12, 14, 115, 116, 117. Rule9 playsaspecial 
roie. i t  conserves any initiai pattern. 

Since STD errors are small, the domain of D can be extended to the whole set of 
symmetric rules. The general difference between the stabilizing and non-stabilizing 
cases consists in the fact that there are neither peaks nor zeros in the distribution of 
non-stable automata. 

Non-stabilizing rules are independent of P (see table 2, and [ 6 ] ) .  Notice that if 
the rule is independent of P, then D becomes the global characterization of the rule 
attractor. 

3. Analysis of stabilities 

instead o i  considering a ruie r as a iunction of four variabies corresponding to the 
particular neighbours, one can view r as a function over the set of configurations. 
Then, r is a function of one variable and its domain consists of 16 elements, labelled 
by numbers in figure 1 .  Because of the spin values taken by neighbours, the elements 
of the domain can be grouped as follows: 

A:  all neighbours have the same value: 2 configurations, 15, 0; 

C: there are two pairs with different values: 6 configurations, 10,. . . , 5 .  
From the point of view of a symmetric rule r , ,  it is enough to consider half of each 

A = (15) 8 = { 1 4 , .  . . , 1 1 1  c = {10,9,8}. (3.1) 

D .L__^ -.:-LL L .L^ _ - I . . - .  P ,.,."G" .._n *:,."" 1 1  n 1 .  
D .  ,,,ITc: nerg,rrvuurr 111"s ,,IS D'l-LIIC Y a & U * .  U CV""gY.aL.Y"J, :e , .  . t ,  . I (  7 , .  , , , I ,  

group. Thus, we choose as follows: 
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Hence, any r, can be defined as a mapping from the union of the separate subdomains 
A, B and C to the set of ‘actions’ which is also divided into three parts, respectively, 
to the actions on the subdomains: 

r,: A u B u C +  [3r]+j. S-E 

S - N .  

\ \ ‘ I  I 
The notation introduced above can be easily explained by the following observations. 
There exist two possible actions u;(f+l) of a spin U< in time t +  1 in the case when 
its neighbourhood o j ( f )  in time t forms an A configuration: the first consists in 
following neighbours in a Ferro ways, 

u ; ( t + l ) = O  if O i ( t )  E A  (3.3) 

and the second one in an anti-Ferro way, 

U j ( f  + 1) = 1 if O i ( t )  E A. (3.4) 

Let us denote them F and FA, respectively. Notice that r, with property (3.4) is called 
an anti-Rule in  the previous section. 

The set of actions over the B subdomain, B actions, is the greatest one because 
the number of B elements is the biggest. All 16 = Z4 B actions can be defined as: 

(i) clustering: 2 actions 

FF: UJf+  1) =o  if@!( [ ) E  B 

AF:  if Oj( 1) E B. Ui(f + 1)  = 1 

(ii) shifts: 8 actions 

S:  u;(f+ 1) = Si( t )  if @ ; ( f )  E B, 

E, N,  W :  as above and the letter denotes the neighbour which 
is shifted. 

AS: ui ( t+ l )= l - s<( t )  if O;( f ) E B. 

AE, AN, A W :  as above and letters denote both the spin value 
conjugation and the neighbour which is shifted. 

(iii) alternative shifts: 6 actions 

S - E :  U , ( ( +  1) = max(S,(t), Ei(t)) i fOi ( t )EB 

s- N, s- W, E - W, E - N, N -  W :  as above with active neigh- 
bours denoted by the letters. 
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The last part of r, is responsible for the rule action when the neighbourhood of a spin 
is C type, C action. One can see that it has to be one from the shifts listed as folhvs: 

S :  U { ( t  + 1 )  = S, ( t )  ifO,(t)EC. 
e, n, w :  

as:  
ne, an, aw:  

as above and the letter denotes the neighbour which 
is shifted. 
uj( t + 1) = 1 - Si( t )  
as above and letters denotes both the spin value conju- 
gation and the neighbour which is shifted. 

The relations between the numbers of the rules (2.3) and actions (3.2) are presented 
in table 1 are given as 

if @ ; ( t )  E C. 

1 = ( F ,  FF, s )  

I U =  ( r ,  J, w )  

25 = (F ,  W -  S, S )  

6 = (F,  FF, as )  
1 1  = (r, J, u n )  

9 = (F, S, s) 

13 = (r, a, u w )  .n , r n ~ ~ \  .. I F  ’. ..., .- I r  0 ..., 

27 = (F ,  W -  S, an)  41 = ( F ,  S - N ,  S) 

45 = (F,  S - N ,  a w )  
1 2 = ( F , S , n )  1 4 = ( F , S , a s )  115 = ( F ,  AS, an) 

43 = (F, S -  N,  a n )  
113 = ( F ,  AS, s) 

1 1 4 = ( F , A S ,  w )  118  = (F,  AS, a s )  
(3.5) 

116 = ( F ,  AS, n )  1 1 7 = ( F , A S , a w )  4 2 = ( F ,  S - N ,  W )  

49 = (F,  W - N, s) 5 1  = (F,  W - N, a n )  
1 2 1 = ( F , A F , s )  124 = ( F, AF, as ) .  

The actions of any rule on the separated parts of domain are clearly seen from equations 
(3.5). When one considers a lattice where spins with A, B or C neighbourhoods are 
separated from each other, then one can observe evolution as a product: 

i ( A u ~ u C ) = i ( A ) x i ( g ) x  ?(C) ,  (3.6) 
On a lattice the only way to see separated actions is to create a lattice with all 
neighbourhoods belonging to one subdomain. One can check that patterns (1.5)-(1.8) 
fulfil this condition. On random initial states the elements from different subdomains 
are randomly mixed. If P = O S  then half of the configurations belong to the B 
subdomain, and therefore any action on the B elements is essential for the whole 
evolution of automata. This action dominates over other partial movements in the 
following sense: aufomata reach the stabilization almost always on a paffern where a 
rule can work as  a translation in the direction which agrees with the B action. There are 
two exceptions from the above observation: when there exists a strong contradiction 
between B and C actions (rules (F, S, n )  and (F,  AS, n ) )  and when the B action does 
not determine any direction (rules ( F ,  F F )  type). In the first case the evolution has 
the property that all changes made during one period combines with the translation 
by the number of period length in the direction fixed by the B action. In the second 
case, the fixed point stabilization is rarely not a translation in one direction, hut there 
are a few parts in a final pattern shifted in different directions [ 7 ] .  

The role of the B neighbourhood is easy to see when the B action is a shift (see 
table 3 ) .  Rules 9 = (F, S, s) and its anti-rule 246 = (FA, AS, a s )  play a special role. Rule 
9 is a translation from South, hence rule 246 is a composition of a translation from 
South and a spin conjugation, and any initial pattern is its own attractor. The evolution 
with a rule r, which has the same E action but acts differently on the C subdomain, 
can be described as the elimination of neighbourhoods on which the rule rs differs 
from one of the pair 9 and 246. The smaller number of differences determines towards 
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Tablr3. Differences between the rulesand the property o f a ~ l e o f l e a d i n g t a  the stalization. 
For comparison with theoretical predictions, results are given referring IO the length of 
time needed by the automata to reach the stabilization and the type of the stabilization 
observed. L=44, P=O.5 ,  and time of observation does not exceed 400 steps. 

Rule number Odd config. to Odd config. to (T)  to Probability 
and action SHIFT SHIFT+CONJ. stabilize and limit 

9 =  ( F ,  S, s) 

I1  = (F, S, an) 
I 3  = ( F ,  S, nw)  

IO= (F, S, w )  
12= ( F ,  S, n )  

l 4=  ( F ,  S, as) 

113 = (F, AS, s) 

115=(F, AS, an)  
117 = ( F ,  AS, o w )  

l l 6 =  ( F ,  AS, n) 
114= (F, AS, e) 

118 = ( F ,  AS, os) 

246 = (FA, AS, os) 

None 

9 
IO 

9.8 
IO, 9 

IO, 9 ,8  

14,13,12,11 

14,..  . ,11 ,9  
14, ..., 11,lO 

14 ,..., 11,10,8 
14, . .  . ,11 ,9 ,8  

14,. . . , 8  

I S , .  . . ,8 

1 5 , . .  . ,8 
I S , . .  . ,10,8 
l 5 , . .  . , l l , 9 , 8  

15 , . .  . ,IO 
1 5 , . .  . , I I ,  8 

1 5 , . .  . , I I  

15,10,9,8 

15,  IO, 8 
15,9,8 

15,9 
15.10 

I 5  

None 

(T)=O 

(T)=6  
(T)=6  

( T ) = l l  
(T)=50 

(T) = 206 

NWM 

(T)=ZSO 
(T) = 206 

(T)=50  
(T)=12 

(T)=7 

(T)=O 

I point 

1 point 
1 point 

I point 
I poimiperiod 

0.5 point 

0 

0.26 oscillation 
0.53 oscillation 

1 oscillationlperiod 
1 oscillation 

1 oscillation 

1 oscillation 

which evolution the rule r. leads. When the same numbers of differences appear, case 
113=(F,AS, s), the stabilization cannot be reached. The conflict in the directions of 
shifts over the B and C subdomains is also reflected in the increase of the length of 
time needed to reach the stabilization, 

There is also a reaction from the C action on the B subdomain. According to this 
process one obtains the same probability of finding B configurations having the same 
vertical (14, 12) and horizontal (13, 11) neighbours. The strongest interaction is obser- 
ved when the shifts have opposite directions, as in rules 12 = (F, S, n )  and 116 = 
(F, AS, n ) .  The favoured pair is the one in which B actions N and S or N and AS 
agree. The differences in probabilities between pairs also depend on P (compare tables 
1 and 2). Other C shifts w, e, s, do not change the initial distribution of the B 
neighbourhoods. They are neutral. The influence of the an C action can be explained 
in the same way as for n, by comparing B actions S with AN, and AS with AN. The 
rest of the C actions as, ae, aw, favour the other pair more than an action does. 

If the action over B is not of the shift type, the evolution does not only mean 
elimination of some A or C neighbourhoods, but it also works on converting B 
neighbourhoods into one from the list (1.5)-(1.8). Such a double effect needs more 
time than the destroying process. But the stabilization at one of the patterns from 
(lS)-(1.8) is only observed if the C action does not oppose the B action. It means 
that rules 25=(F,  W - S , s ) ,  27=(F,  W - S , a n ) ,  4 1 = ( F , S - N , s )  and 4 5 =  
( F ,  S- N, aw) always lead to stabilization (in a time shorter than 100 steps if L=44)  
as a translation with one from directions given by the B action. On the other hand, 
rules 42 = (F, S- N, w ) ,  43 = (F, S- N, an) ,  49 = ( F ,  W -  N, s )  and 51 = (F, W -  N, an) 
never cause stabilization in our experiments, Notice that stabilization is reached on 
the pattern where there are only such C neighbourhoods which have the property 
W, =Si in case of rules 25 and 26 and S, = N, in cases 41 and 45. 



Dynamics of cellular automata 1451 

The action FF over the B subdomain destroys B neighbourhoods, independently 
of the C shift, but also converts them into A neighbourhoods. In this case the B action 
does not fix the translation direction and therefore the direction depends on the C 
action but it is not fixed [6,7]. It rarely happens that a final pattern consists of a few 
rectangular parts, on which the evolution is a translation but the directions of shifts 
in different parts are different. The rule with the B action, A F  as opposed to FF, 
cannot give a stable solution. 

4. Conclusions 

There exists a powerful characterization of dissipative symmetric and homogeneous 
automata by the distribution of neighbourhoods in the final patterns. The attracting 
patterns attainable by the automata are firmly determined in this picture if the initial 
states of automata are taken randomly. The distribution function D, given in equation 
(2.4), as the macroscopic function can give answers to some global questions (for 
example, it can be used to compute magnetization (2.5)). Moreover, it also gives some 
new hints concerning the old problem of classification of cellular automata. The final 
patterns can be viewed not only as a mixture of zeros and ones but as well defined 
structures which are conserved in time. 

The properties of non-stabilizing rules can be expressed by the neighbourhood 
distribution function as well. Although the automata are not stable, the possible pattern 
configurations passed during the evolution are greatly restricted. 

Since the distribution function D also reflects the individual properties of rules, it 
can be used as a tool for understanding the nature of cellular automata. 

Notice that there is no problem introducing the neighbourhood counters into the 
computer program because the neighbourhoods have to be recognized during the 
evolution of homogeneous cellular automata. 

The structure of the rules introduced via the discussed actions makes it possible 
to give a satisfactory explanation not only of the obtained neighbourhood distributions 
in the final patterns but also allows elucidation of such properties of the automata as: 
whether or not the stabilization is reached, the length of time needed to stabilize the 
system, and even type of stabilization. 
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